
HOMEWORK 10

Due date: Tuesday of Week 11

Exercises: 4.1, 6.1, 6.2, 6.3, 7.2, 7.7, 7.11, 8.2, 8.4. Pages 506-508

Problem 1. Let K be the splitting field of x3 − 2 ∈ Q[x] over Q. Compute Gal(K/Q).

Let α = 3
√
2. In one of our previous exam, you are required to compute the inverse of the element

a + bα + cα2 explicitly in Q[α]. Here a, b, c ∈ Q and at least one of them is nonzero. That is, find
x, y, z ∈ Q such that 1

a+bα+cα2 = x + yα + zα2. It turns out that this is quite complicate. On the

other hand, the inverse of the element a+ b
√
2 ∈ Q(

√
2) is very easy to compute. Actually, we know

that
1

a+ b
√
2
=

a− b
√
2

(a+ b
√
2)(a− b

√
2)

=
a− b

√
2

a2 + 2b2
.

You may now see that the reason is the “conjugate” a − b
√
2 is easy to find. In our terminology

of Galois theory, we have Gal(Q(
√
2)/Q) = {1, σ}, where σ is the element σ(x + y

√
2) = x − y

√
2.

Since we know the Galois group Gal(K/Q) explicitly now, we could find all of the conjugates of

a + bα + cα2. So it is possible to imitate the above example on a + b
√
2 to find the inverse of

a+ bα+ cα2.

Problem 2. For α = 3
√
2. Find the inverse of 2 + α explicitly using a similar method as in the

a+ b
√
2 case.

The method described above is just

1

a+ bα+ cα2
=

∏
σ∈Gal(K/Q),σ ̸=1 σ(a+ bα+ cα2)∏
σ∈Gal(K/Q) σ(a+ bα+ cα2)

.

The bottom is just NmK/Q(a+bα+cα
2), which is clearly in Q. This is still very complicate, because

the Galois group is relatively big. In the above, we work in the larger field K not Q(α) directly.
One reason is that Q(α)/Q is not Galois. But it is possible to work over Q(α) directly. In this case,
instead of using the Galois group Gal(K/Q), one needs to use all Q-embeddings Q(α) → C. This is
indeed a little bit simpler.

1. Trace is non-degenerate for separable extensions

Problem 3. Let G be a group and Ω be a field. Let χj : G→ Ω×, j = 1, . . . ,m be pairwise distinct
homomorphisms (namely, χj(g1g2) = χj(g1)χj(g2),∀g1, g2 ∈ G). Show that if c1, . . . , cm ∈ Ω such
that ∑

j

cjχj(g) = 0,∀g ∈ G,

then cj = 0 for all j. In other words, χ1, . . . , χn are linearly independent over Ω.

Hint: Consider a relation
∑
cjχj = 0 with minimal nonzero cj and try to obtain a relation with

fewer lengths. This is Theorem 4.1 (a theorem of Dedekind), page 283 of Lang’s book “Algebra”.
Let K/F be a separable extension of degree n. Recall that for α ∈ K, TrK/F (α) =

∑n
i=1 σi(α),

where {σ1, . . . , σn} is the set of all F -embeddings K → Ω for an algebraic closed field Ω with K ⊂ Ω.
See HW9, Problem 8.

Problem 4. Let K/F be a separable extension of degree n. View K as a vector space over F of
dimension n. Consider the map

ψ : K ×K → F,
1
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ψ(α, β) = TrK/F (α · β).
Show that ψ is a non-degenerate bilinear map.

Here is the definition of non-degenerate bilinear map. Let V be a vector space over a field F . A
bilinear map f : V → V → F is called non-degenerate if it satisfies one of the following equivalent
conditions:

(1) Let B = {αi}1≤i≤n be a basis of V , then the matrix [f ]B := (f(αi, αj))1≤i,j≤n is invertible;

(2) For any α ∈ V , if f(α, β) = 0 for all β ∈ V , then we have α = 0;
(3) For any β ∈ V , if f(α, β) = 0 for all α ∈ V , then we have β = 0.

See page 365 of Hoffman-Kunze.
Hint: Let B = {αi}1≤i≤n be a basis of K/F and let {σ1, . . . , σk} be the set of all F -embeddings

K → Ω into a fixed algebraically closed field Ω. Consider the matrix [ψ]B = (ψ(αi, αj)) =
(Tr(αiαj)) = (

∑
k σk(αi)σk(αj))1≤i,j≤n. Let A be the matrix (σk(αi))1≤i,k≤n ∈ Matn×n(Ω). Show

that [f ]ψ = AAt. If det([f ]ψ) = 0, then det(A) = 0, which means AX = 0 has a nontrivial solution
in Ωn. Then use Dedekind’s theorem (last problem). Notice that each σi can be viewed as a group
homomorphism K× → Ω×.

Problem 5. Let K/F be a separable extension of degree n. Show that there exists an element α ∈ K
such that TrK/F (α) ̸= 0.

This is a consequence of the last problem. IfK/F is not separable, then TrK/F is indeed identically
zero. We have seen one example in last HW.

2. Finite fields

Let F = Fq with q = pr for some r. Let K/F be a finite field extension. Recall that K/F is
Galois and Gal(K/F ) is a cyclic group of order [K : F ] generated by FrobF : K → K defined by
FrobF (x) = xq. For simplicity, we write σ = FrobF and thus Gal(K/F ) =

{
σj , 0 ≤ j ≤ n− 1

}
.

Problem 6. Let F = Fq and K/F be a field extension of degree n. What are the intermediate
fields E of F ⊂ K? Give the explicit bijections between the intermediate fields and the subgroup of
Gal(K/F ).

Problem 7. Let F = Fq with q = pr and let K/F be a finite extension of degree n. Given α ∈ K,
show that

TrK/F (α) = α+ αq + · · ·+ αq
n−1

=

n−1∑
j=0

σj(α).

and

NmK/F (α) =

n−1∏
j=0

αq
j

=

n−1∏
j=0

σj(α).

Problem 8. Let F = Fq and K/F be a finite field extension of degree n. Let α ∈ K. Show that
TrK/F (α) = 0 iff there exists an element u ∈ K such that α = u− uq.

One direction is easy. Conversely, suppose that Tr(α) = 0. Take β ∈ K such that TrK/F (β) ̸= 0.
Such a β exists by Problem 5. Then consider the element

u =
1

TrK/F (β)
(ασ(β) + (α+ σ(α))σ2(β) + · · ·+ (α+ σ(α) + · · ·+ σn−2(α))σn−1(β))

and prove α = u− uq.

Problem 9. Let F = Fq with q = pr for some r. Given α ∈ F . Show that the polynomial
f = xp − x− α ∈ F [x] is either irreducible or a product of linear factors. Moreover, show that f is
irreducible iff TrF/Fp

(α) ̸= 0

Hint: Given a root u of f in some field extension, consider u+ c for c ∈ Fp.

Problem 10. Let F = Fq with q = pr for some r. Given α ∈ F . Suppose the polynomial f =
xp − x− α ∈ F [x] is irreducible. Compute its Galois group Gf .
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